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The classical Heisenberg method of solving the Orr-Sommerfeld equation is modified 
in such a way that inner and outer expansions are replaced by a uniformly valid 
successive approximation in which no data on the second derivative of the parallel 
shear profile are needed. It is shown that this feature enables us to calculate stability 
characteristics for wider classes of flows with improved accuracy. As a preliminary 
check for validity of the method, stability of the Blasius flow is calculated and 
compared with existing methods. It turns out that the method works for high 
Reynolds numbers, up to about lo6, and that the expressions for the eigenfunctions 
and the eigenvalue condition are much simpler than those found by existing methods. 

1. Introduction 
As is well known, analytical methods of solving the Orr-Sommerfeld equation have 

their origin in the pioneering work of Heisenberg (1924) and underwent later 
development by Lin (1945, 1946) suitable for applications to practical problems. The 
approach along this line has provided us with a number of fruitful assertions on the 
nature of the flow stability (see e.g. Drazin and Reid 1981). 

On the other hand, powerful computational methods have been developed with the 
advent of high-speed computers and seem to have outgrown other methods of solution, 
at least in achieving accuracy (Betchov & Criminale 1967). We can calculate, then, 
eigenvalues and eigenfimctions of the equation with sufficient accuracy if data on the 
velocity profile are prescribed up to the second derivative, and if the Reynolds number 
is not too high. 

These two approaches are, in principle, complementary to each other in the sense 
that the analytical method yields better results for high-Reynolds-number cases in 
view of its nature aa the asymptotics, whereas the computational methods favour 
low Reynolds numbers because of the inherent problem of step-size limitations. The 
actual situation, however, is that, even for the simplest case of Blasius flow, the 
high-Reynolds-number limit of the computational methods is still too low to allow 
for smooth matching with asymptotic curves calculated by Lin (Drazin & Reid 1981). 

In order to bridge this gap, we should have a theory in which the concept of 
asymptotics is abandoned, and which has a wider region of validity covering lower 
Reynolds numbers. This, in turn, requires the retention of the viscous term in the 
governing equation throughout the region under consideration. 

This problem has been motivated by an attempt to improve the classical 
Heisenberg formalism so as to eliminate the so-called 'patching ' procedure caused 
by the failure of asymptotic matching. In solving the Orr-Sommerfeld equation 



168 S. Tsugt and H .  Sakai 

with 

(where R, c,  A and a denote respectively the Reynolds number, the wave-propagation 
velocity, the total wavenumber and its streamwise component), Heisenberg ignored 
the terms with the small parameter 

€' = (aR)-' (1.2) 

lu-cl < 45'. (1.3) 

(1.4) 

except in the vicinity of the critical point, 

Then the resulting inviscid equation 

[ ( U - C )  (D2--A2)-~"] Y = 0 

is shown to be integrable analytically through expanding Y in terms of A2 as 

03 

Y = P Y , .  
ta-0 

(1.5) 

This solution is supposed to be connected with the so-called viscous solution valid 
in region (1.3). Unfortunately (though not fatally), continuation of the two solutions 
does not conform with the rule of matching required by asymptotic analysis. 

Reexamining the Heisenberg method, Tsug6 (1978) has pointed out that the 
analysis can be carried through without deleting the viscous term if the expansion 
(1.5) is employed. In  fact, then, the equation governing 

Yo = Q, 
is, from (1.1) and (1.5), 

[&-(u-c)DZ+u"]@ = 0, 

which is integrated once immediately, yielding the third-order equation 

This equation is seen to have the following favourable features. First, a third-order 
equation is much easier to handle than a fourth-order equation. Actually, if we can 
manage to get a particular solution, we are then left with a second-order equation 
for which versatile mathematical tools are available to obtain the remaining 
solutions. Secondly, by virtue of the presence of the viscous (third-order) term, the 
point u - c  = 0 ceases to be a critical point, in contrast with (1.4). The singularity 
consideration that had complicated the classical analysis is no longer necessary. 
Thirdly, the curvature term disappears through the integration, and is replaced by 
the first derivative. The advantage of eliminating the U" term in the equation is 
obvious, in particular for flows having no analytical expression for u(y) .  Employing 
the adjoint Orr-Sommerfeld equation instead of the original one has the same merit. 

A few remarks must be made regarding the reason for not employing the usual 
expansion in a small parameter in the proposed method. This situation is examined 
by introducing a scaling 

y = "7, (1.9) 

with € = (all)-% 
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In  terms of the stretched variable 7 ,  (1.8) is transformed as 

(1.10) 
ii; 
T--(U--C)(h+U@ = c‘, 
1 

where (h = dQi/dy. Note that the stretching rate e-l  is greater here than that used 
in the classical theory, namely (E”)-’ - (ocR)i. We observe that the last term on the 
left-hand side of the equation is smaller by a factor of E compared with the other terms, 
because u varies with y, whereas the differentiation is with respect to y. If we deleted 
the term for this reason, the classical ‘viscous’ solution would result, and @(r)  would 
be expressed in terms of Hankel functions. On the other hand, correct far-field 
behaviour of the solution is secured only through balance of the last two terns on 
the left-hand side (Heisenberg 1924). This means that & vanes like u, in other words, 
that Qi is a function of y rather than 7 at large distances from the viscous layer, where 
the first two terms compete. It is then obvious that, as far as the calculation is 
practicable, it is preferable to work with the full equation (1.8) without invoking any 
scaling or approximations associated with it. In  fact, retention of these three terms 
is the key issue of the uniform validity of solution by which we are able to eliminate 
the procedure such as inner or outer expansions of the asymptotics. 

The approach to the solution is as follows. Provided that we have obtained all the 
solutions in the first approximation of (1.8), a routine procedure of successive 
approximation will improve the accuracy of the solution automatically. Therefore 
the central part of the analysis will be to derive four independent solutions of (1.8), 
which we shall discuss in $2. Emphasis will be on differences as well as similarities 
of each solution compared with its classical counterpart due to Heisenberg and Lin. 
Section 3 will be devoted to discussions of the higher approximation, where a 
technique is introduced to speed up the convergence. The eigenvalue problem is 
formulated ($4) by using those elementary solutions, and the proposed method is 
compared with the existing one through calculated stability characteristics of the 
Blasius boundary-layer profile. 

2. Analytical background of the solution of (1.8) 

(1.8), namely 

In numbering the four solutions, we have followed conventional usage (see Lin 1945, 
1946) so that each counterpart has the same asymptotic behaviour; @, and e2 tend 
to moderately varying functions, whereas Qia and e4 exhibit exponential decay and 
growth respectively. Our procedure of obtaining the solutions will be carried out 
in the order of C P ~ - + @ ~ + @ ~ + @ ~  in such a form that each solution will be obtained 
using knowledge of @s at previous stages, and Qi4 and will be solved as exact 
solutions in terms of and G2. 

In  this section we are concerned with obtaining the four independent solutions of 

EQi”’-i(u-c)@’+iu’@ = iC,. (2.1) 

Solution e3 
First we consider the homogeneous equation (C, = 0) of (2.1), which provides three 
independent solutions Qi2 through @4 : 

s@”’-i(u-c)@’+iu’@ = 0. (2.2) 

This equation has a structure such that the critical layer (u = c)  is an ordinary point, 
so that no artifice as needed in the classical treatment is necessary in integrating the 
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equation across the point. In  view of this feature, and of the prospective exponential 
decay, the solution @i3 may be assumed in the form 

@ia =exp Ady. (2.3) s," 
Then (2.2), subject to this transformation of the dependent variable, reads 

€(A" + 3AA' + A 3 )  -i(u-c) A +iu' = 0. 

This equation reduces to first-order simultaneous equations by introducing an 
additional intermediate variable p, 

A' = p-k-l(u-c), p' = -3Ap+4is-'(u-cc)A-A3. (2.4) 

Since we are seeking a solution of (2.4) that decays exponentially in the asymptotic 
limit (A',p' - 0), the above equations require the root A with negative real part: 

The system of equations (2.4) can be transformed into a simple form in the following 
way. Multiply the first equation ah and then add i t  to the second one. Then we have 

where terms with B have been introduced on both sides without violating the equality. 
Parameters a and are determined by the condition that quantities in the square 
brackets take the same value. Two sets of values (a,B) to meet this condition are 
found to be (1, -:) and (2, -2). This is equivalent to introducing the 
variable- transformation 

V = -p++i~-~(u-cc)-A~, U = -2p+3ia-'(u--c)-A8 (2.6) 

V'+AV-2is-'uf = 0, U'+2AU-3is-'uf = 0, (2.7) 

V ' , U ' - 0  asy+oo. (2.8) 

and to work with the equations in the new dependent variables ( V ,  U ) :  

! subject to the conditions 1 

The actual integration may be started at a point y = g( S= 1) with initial values 

2 is - l~ '  3 i s - l~ '  v=- , u=- 
A 2A ' 

where A, given by (2.5), is moderately small. The quadrature marches inward from 
this point, with the nonlinearity of (2.7), appearing in the form 

A = - eini [ E -  1(u - c) + 2i v - i UJ~ (2.10) 

(as obtained from (2.6) by eliminating p) ,  taken into account for y < 3. Outside this 
region we have 

l + i  5 u' A=--(u-c)L-- 
( 2 4  4 u-c' 

(2.11) 

where the asymptotic form (2.9) has been employed. Actually the point y = 9 is so 
chosen at to make the second term of (2.11) small by a factor of compared with 
the first term. 

It should be remarked here that this method of numerical integration of the original 
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equation (2.4) works successfully only for the decaying solution @,, and that a 
formally identical procedure for the growing solution a4 suffers from numerical 
instabilities. The difference has its origin in the fact that the point y = 00 is a saddle 
singularity of (2.4) for the case treated, whereas in the Qi4 case it proves to be a nodal 
singularity from which an infinite number of solutions emerge. 

It can be demonstrated that our solution (2.3) has the same asymptotic form as 
its classical equivalent for y > @ B 1. In fact, a straightforward calculation of (2.3) 
with (2.11) substituted therein leads to 

@,(y) = @,(@)(--).exp[ 4-c -eiziE-iJY (u-c)!dy] for y > @ >> 1. (2.12) 
B u-c 

On the other hand, the classical counterpart of Qi, is 

as given by Lin, where H f )  denotes the Hankel function of the first kind, and 7 and 
a, are defined by 

7 = (y-y,) (&, a, = (u$, (2.14) 

with subscript c signifying the value at the critical point. This solution, corrected to 
hold at far field, is given by Tollmien’s improved viscous approximation (Drazin & 
Reid 1981, p. 176), and its asymptotic expression coincides with (2.12) to within a 
multiplicative constant. 

Once we have obtained one of the solutions of the third-order equation (2.2), 
difficulties are considerably lessened in solving for the rest of them because of the 
following theorem. If n independent solutions of a mth-order linear differential 
equation are available, the (n+ 1)th solution is obtained by solving an equation of 
(m-n)th order. This theorem applied to the current case for the second solution Qi, 
needs an equation of order 3 - 1 = 2 to be obtained by putting 

Solution @, 

@, = @,JOY Qdy (2.15) 

and by substituting this into (2.2). This, in turn, is equivalent to claiming that, if G 
is assumed in the form 

Q = exp (-h+T)dy, (2.16) 

the transformed variable T obeys a first-order (nonlinear) equation. A simple 
calculation actually confirms the assertion, leaving us with a Riccati equation 

T’+TB+AT-U = 0, (2.17) 

where h and U have been obtained from (2.10) and (2.7) respectively. Of the two 
asymptotic roots of (2.17) for T - 0, the one that vanishes as y+ 00, namely 

T = U / h ,  (2.18) 

turns out to be the correct choice. This root alone given rise to the solution @, 
meeting the requirement of moderate variation as y+ 00. In fact, then 

J” 

(2.19) 
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with 

where use is made of the fact that the integrand in (2.19) is a rapidly growing function 
to compensate for the rapid decay of G3, so that only the region in the vicinity of 
the upper bound contributes to the integral; the integral may then be replaced with 

( - A  + T)-l exp J ( - A  + T) dy. 
Y 

0 

It seems to be of interest to compare aZ with its classical counterparts 

(G2)CL. in = 1 + O ( w - 4  (@2)CL, out = U-C (2.20) 

representing inner (viscous) and outer (inviscid) Heisenberg solutions respectively. 
We note that the classical G2 is plainly slowly varying, whereas G2 as given here is 
moderately varying in the interior region and tends only asymptotically (y %- 1)  to 
a slowly varying function (2.19). Also to be noted is the coincidence of (2.19) with 
the leading term of the classical outer solution, proving a sound basis of the 
asymptotic scheme adopted here. 

For later use we note that G2 obeys the following fir,&-order differential equation: 

with 

3 = AG2 + s, 
dY 

S = exp Joy Tdy, 

(2.21) 

(2.22) 

the validity of which is easily checked by differentiating the expression (2.15) and 
substituting (2.16) and (2.3) into the result. 

Solution G, 

Repeated use of the foregoing theorem assures that the third solution satisfies a 
first-order linear differential equation to be deduced from (2.2). This assertion can 
be materialized by means of the method of variation of constants : 

G, = r2 CD~ + r3 G ~ ,  (2.23) 

where G2 and G3 are functions of y to be determined. Having eliminated r, between 
the original equation (2.2) and the supplementary condition 

r ; G 2 + r p 3  = o 
standard in this method, we are led to an equation for 
first order : 

r3 that is essentially of the 

This equation is analytically integrated to give 

@, = - cD2 I," G3 w - ~  dy + G3 Jog G2 w - ~  dy, 

where w is the Wronskian formed by G2 and G3: 

(2.24) 

(2.25) 
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It is easily confirmed from the analytical solution (2.24) for a4 that this solution 
has an asymptotic form of exponential growth with y. In fact, using the same 
approximation as has been utilized in deriving (2.19), we have for (2.24) 

(2.26) 

@J4--- 2 1 1  AS@, Qs - B,(u-c)-t exp[eiffiJ: (u-c)idy], 

1 eiZi 1 B = -  
2=@=$' 

with 

where, in deriving the second line, the asymptotic expressions (2.12) and (2.19) for 
Q2 and eS have been used. Relationship (2.26) is again in agreement with its classical 
equivalent, as in the case of the decaying solution as. The classical equivalent is 

[G4(7)IcL = s' d7 JIw d7 7!Hfa)[f(iaO T)!] ,  (2.27) 

with the same nomenclatures as before and with the Hankel function of the second 
kind Hi2). The same far-field correction as given to e3 is applicable also here, and 
the resht shows agreement with (2.26). 

The set of solutions (G2, GS, a4) thus constructed has noteworthy characteristics 
for the Wronskian, which serve to simplify the analyses to follow: 

-W 

WIII = @; @; @; = 1. (2.28) /m, @I @a a; @ 4 1  @; 

This formula is easily checked by noting the following relationship : 

(2.29) 
d2G2 dWS 

4- d'@ - --/'$dy+-]' % d y + h ,  W 1 = 0,1,2,  
dY' dY' 0 w dy' w2 

where S is the Kronecker delta. 

rsoluticm @, 

Since all the homogeneous solutions now have been exhausted, the fourth solution 
@, of (2.1) needs to be sought from particular solutions of the equation with C ,  = B :  

EG;II - i(u - c) 0; + id@, = is. (2.30) 

The method of variation of constants provides a workable tool here also, since we 
have all the homogeneous solutions a2 to According to the theorem cited, no 
differential equation needs to be solved, and a manipulation using the key property 
(2.28) leads to the following form of the solution: 

Y Y 
@, = i02  jg wl, dy - JOY w12 dy + iG4 J', w dy, (2.31) 

with Il  = I" @' w+ dy, 1 = 2,3,  (2.32) 

where y = 9 $ 1 is a point beyond which the asymptotic expressions for a2 to a4 are 
valid. Taking derivatives successively, we have 

a relationship easily checked using (2.29), (2.20) and (2.21). 
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The function @, in the form of (2.31) is shown to tend to a slowly varying function 
for y 9 1 under the same conditions as invoked in deriving the asymptotic expression 
(2.19) for G2; the resulting expression is 

Y 
G1 - - (u-c)JG (u-c)-2dy (y > $ % 1) .  

For comparison, the classical equivalent of this function is noted : 

(2.34) 

where 7 has been defined in (2.13). Coincidence of our asymptotic expression with the 
classical outer solution is obvious here too. 

In view of (2.33), we can easily show that the following relationship holds regarding 
the Wronskian formed by the four solutions a1 to Q4: 

= -lwIII = -1.  (2.36) 

As in (2.21), @, also is shown to obey a first-order differential equation. In  fact, 
if we differentiate (2.31) and substitute (2.21) for @; and (2.29) for @: into the result, 
then we have the equation 

__- d@l A @ , =  P, 
dY 

with P defined by 

where $ = J" wdy. 
00 

(2.37) 

(2.38) 

(2.39) 

3. Higher-order approximations 
Now that we have obtained the solution (1.6), namely the zero approximation of 

the power-series expansion in A2, we can proceed to obtain the higher-order terms 
in the expansion (1.5). We will see a posteriori that the expansion (1.5) constitutes 
an alternating (complex) series ; therefore convergence will be improved by introducing 
the parameter 

A2 [=- p"+ A 2 ,  where /3 is a real constant, 

and by utilizing it as the expansion parameter to replace A%. This is a generalization 
of the so-called Euler transformation which speeds up convergence of an alternating 
series. The classical Euler transformation corresponds to /3 = A. 

We shall take advantage of this fact in advance and expand the Orr-Sommerfeld 
equation (1.1) in terms of 5 :  

(L,+CLI+SL,) y = 0, (3.2) 
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where the operators Lo, L, and L, are shown to take the forms 

Lo = sD4-i(u-c)D2+iu", (3.3) 

L, = -2L0+pK,  

L, = Lo--$K+@, 

K = i(u-c)-2eDa. (3-6) 
Let the eigenfunction be expanded in 5 accordingly: 

W 

Y = @+ x I;flY(n), 
n-1 

(3.7) 

then substitution into (3.2) and rearrangement in the order of magnitude in 
us the following series of equations: 

give 

Lo yen, = - L Y(n-1) - L Y(n-2) , n > l ,  I (3.8) 
1 2 

with Y(-l) defined as zero. This equation, in turn, is written in an alternative form 
more convenient for actual calculations : 

Lo W(") = - KZ(n-1) - p e  y(n-a), n 2 1, (3.9) 
where we have defined 

Z(n)  = yw- y(n-l), (3.10) 

W(n) = ~ ( n )  - Z(n-1) = y(=) - 2 y(n-1) + y(n-2). (3.11) 

Equation (3.9) is integrated once directly as in (1.7), and provides the following 
equation : 

(e D3 - i(u - c) D + iu') W(") = ie( ,P L2P-l) f ,P M Y(n-2)), (3.12) 

where L and M are defined by 

and 

Y 
LZ E -e-l[$ (u-c)Zdy-2iZ', 

M Y  = i c  Ydy. 

(3.13) 

(3.14) 

Comparing this equation with (2.31), we see that it can be solved by the same method 
that was employed to obtain dj1 in $2. We then have, in parallel with (2.33), 

wQdy+i&,,Q, 1 = 0,1,2,3, (3.15) 

(3.16) 

If this solution for W is substituted into (3.10) and (3.11) in which the variables 
are eliminated, we obtain a formula for the eigenfunction Y in terms of Ws: 

(3.17) 1 N-1 
Y = lim [s@+ x k ( c , N - m ) p  W(m+l) , 

N + w  m-1 

where k is defined by 

(3.18) 
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4. The eigenvalue problem 
In 92 we have obtained four independent solutions djl to G4 at the level of zero 

approximation, or in the limit of vanishingly small wavenumber. If we also use one 
of these dj, as the dj in (3.17), in the inhomogeneous terms a(@) from which to 
calculate Ws successively, we will have four independent solutions 5 ( j  = 1,2,3,4) 
with full wavenumber corrections incorporated. The fundamental properties by 
which the GI are characterized (92), namely that @jl and dj, are responsible for 
moderately varying functions, and dj, and e4 correspond to rapidly decaying and 
growing functions respectively, are preserved for the corresponding Y,. In addition, 
the properties 

(4.1) djl(0) = @ , ( O )  = dj4(0) = 0, dj3(0) = 1 

that are directly checked in view of (2.31), (2.15), (2.24) and (2.3), are also shown 
to be preserved for 5:  

Y1(O) = Y,(O) = Y4(0) = 0, Y3(0) = 1. (4.2) 

In  fact, all the correction terms Wen) in (3.17) vanish, as is readily seen from (3.15) 
(for I = 0) subject to (4.1). 

With these solutions in hand, we can construct the general solution 
4 

Y =  c c*y, 
I-1 

(4.3) 

for a semi-infinite shear flow bounded by a solid surface placed at y = O  and 
unbounded otherwise. Then, of the four coeficients, C, should vanish to secure 
boundedness of Y as Y + 00. On the other hand, C, should also be zero in order for 
(4.3) to satisfy an impermeability condition at the wall, 

Y(0)  = c1 Y1(O) + c, Y2(0) + c, Y3(0) = c, = 0, (4.4) 

in view of (4.2). Thus it turns out that only Yl and Y, are needed to construct the 
eigenfunction : 

This is in contrast with the classical method, where three independent solutions are 
necessary for the same purpose. It does not mean, however, that the rapidly changing 
functions dj3 and G4 are not involved at all in the present analysis. As is evident in 
view of the procedure leading to the solution dj,, we need to know Q3 (see (2.15)). 
The same is true for the solution GI, because it depends on dj3 and dj4 through (2.31). 
This is a reflection of the fact that a rapidly changing nature is imbedded in and 
a2 as well, although they are designed to behave as slowly varying only in the 
asymptotic limit. 

The eigenvalue condition is formulated through imposing the no-slip condition at 
the wall, 

Y = C,Y,+C,Y,. (4.5) 

y'(0) = c, Yi(0) + c, Yi(0) = 0, (4.6) 

and forcing the solution to obey 
Y + A Y  = 0 (4.7) 

at a pointy = 9, considered to be far enough away from the wall to obey the condition 

A2 %I-l. U" 

u - c  
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In fact, under this condition the Orr-Sommerfeld equation (1.1) has a solution 
decaying like e-*V, in other words, obeying (4.7). The requirement that the 
eigenfunction (4.5) should decay in this fashion far from the boundary reads 

Cl( Y;+AY,)+C,(Yt+AY,) = o at y = 9. (4-9) 

This condition, together with condition (4.6), constitute an eigenvalue problem with 
the eigenvalue condition to be obtained from the following determinantal equation : 

E(A, c, R) = E,+ iEi 

(4.10) 

This equation proves to be much simpler than its counterpart in the classical theory, 
and the determinant can be calculated directly through manipulating (3.17) for 
@ = O1 and @,. 

y2°) I - lY;(9)+ayl t9)  Yt(Q)+AY,(9) 
- y m  

= 0. 

5. Calculations for the Blasius boundary layer: comparison with existing 
methods 

As a step towards the future problem of determining stability characteristics of 
a wider class of flows, we will show, in this section, the stability characteristics of 
the Blasius profile calculated by the proposed method. 

Figure 1 shows the elementary solutions Yl and Y, calculated up to the sixth 
approximation for Reynolds numbers R = 2080 and R = lo5 respectively. Note that 
both functions satisfy the impermeability condition ( Y ( 0 )  = 0)) as they should. As 
is seen from this figure, the functions Yl and Y2 are not slowly varying in the sense 
of classical asymptotic theory; they are rapidly varying near the boundary, and tend 
to be slowly varying functions only for y % 1. In  fact, repeating the successive 
approximation (3.15) (with I = 0) which starts from (2.33) for G1 and (2.15) for O,) 
and carrying out the summation of the infinite series, we obtain 

(Y s 9).  
Yl - -(u-c)-l sinhA(y-fj), 

Y2 - (U-C) coshA(y-fj) 

Of course, these relationships hold only in the region where the rapidly changing 
factors (Q3 and O4 in (2.31) and (2.15)) cease to operate. 

Figure 2 shows the convergence check in terms of the first derivative of the 
eigenfunctions. Excellently rapid convergence is observed at  R = lo6, and the rate 
of convergence is reasonable at R = 2080. These results contrast sharply with the 
situation in the earlier computational method by which convergence gets more 
difficult as the Reynolds number is increased. Small ripples observed in crossing the 
critical layer u = c for the fluctuation profile at R = lo5 are seen to disappear at lower 
Reynolds numbers. 

In  figure 3 is shown the longitudinal fluctuation I Y'I corresponding to the eigen- 
values as listed in the figure. For comparison, results of calculations by Schlichting 
(1935), Radbil (1966) and Wazzan, Okamura & Smith (1968) at the same Reynolds 
number are also plotted. The measured eigenfunction from Schubauer & Skramstad 
(1948) is also shown for reference. Differences among the calculated eigenfunctions 
are hardly discernible, except for the result of Schlichting. 
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FIGURE l(a). For description see opposite. 
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FIGURE 1. Elementary solutions Yl and Y% and their derivatives calculated up to the fifth 
approximation at Reynolds numbers R = 2080 (a) and lo6 (b) .  Other parameters are so chosen aa 
to satisfy the eigenvalue condition for neutral stability for the respective cases. The dotted lines 
denote the location of the critical layer (u = c). 
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FIGURE 2. Convergence check at R = 2080 (a) and lo6 (a) of the first derivative of the eigenfunction. 
The curves for N = 5 correspond to a linear combination of Y; and Yi of figure 1 to satisfy the 
no-slip condition. 

Figure 4 shows the neutral-stability curve in the (a,R)-plane with the abscissa 
plotted against after Drazin and Reid (1981). The solid hairpin curve is the 
computational result due to Jordinson (1970). As the figure shows, its upper branch 
falls short of the classical asymptotic line of Lin (1945, 1946) because of the numerical 
stability limit. The eigenvalues calculated by the present method agree, within a 
difference not recognizable in the figure, with Jordinson's curve (the upper branch) 
in a Reynolds-number region from 5000 to the critical value R = 519. For higher 
Reynolds numbers the present method provides eigenvalues that merge with the 
asymptotic line. Figure 5 gives the same results plotted in the plane of phase velocity 
c and wavenumber a. 

Beyond the value R = 2.0 x lo6 there is an indication of numerical instability 
observed in the solution procedure of (2.7). It seems to be caused by too rapid a change 
of A in approaching the critical layer. 
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FIQURE 3. Comparison of the calculated eigenfunction with those by Schlichting (1935), Radbil 
(1900) and Wazzan et al. (1968) at the same Reynolds number of R = 2080. Experimental data by 
Schubauer-Skramstad are also plotted. 
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FIGURE 4. Neutral-stability curve in the (wavenumber, Reynolds number) plane of the Blasius 
profile. The calculated results are shown by dots. For Reynolds numbers smaller than 5000 the 
calculated pointa are not distinguishable from the solid hairpin curve due to Jordinson (1970). Two 
straight lines oorrespond to the asymptotic solution by Lin (1945, 1940). 
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FIGURE 5. Neutral-stability curve in the (wave-velocity, wavenumber) plane, a representation based 
on the same data used in figure 4. The hairpin curve is due to Jordinson (1970) and the asymptotic 
lines are due to Lin (1945, 1946). 

The high-Reynolds-number region as discussed here is of no practical interest for 
the Blasius boundary layer. However, for some Falkner-Skan boundary layers with 
favourable pressure gradients, the critical Reynolds number exceeds the value 

The authors have learned that the use of the compound matrix method in the 
numerical solution for obtaining the eigenfunction is successfully employed at an even 
higher Reynolds number of lo8 (Davey 1982). We would like to note that the highest 
Reynolds number we have achieved is based on the use of a standard solver built 
in the available computer software, and can of course be improved. 

R = 104. 

6. Conclusions 
An (almost) analytical method of solving the Orr-Sommerfeld equation that does 

not require the curvature data of the velocity profile is described and compared with 
existing methods. It is shown to have the advantage of simplicity in the formulation 
of the eigenvalue and the eigenfunction. It is also demonstrated that the method 
works for high Reynolds numbers where current computational methods fail. 
Applications to stability problems of shear flows with profiles given only through 
measurements or having no analytical expressions are suggested. 

REFERENCES 

BETCHOV, R. & CRIMINALE, W. 0. 1967 Stability of Parallel Flows. Academic. 
DAVEY, A. 1982 A difficult numerical calculation concerning the stability of the Blasius boundary 

layer. In Stability in the Mechanics of Continua (ed. F. H. Schroeder), p. 365. Springer. 
DRAZIN, P. G. & REID, W. H.  1981 Hydrodynamic 9tability. Cambridge University Press. 



Solution of Orr-Smnmerfeld equation by a modi$ed Heisenberg method 183 

HEISENBERG, W. 1924 uber Stabilitiit und Turbulenz von Fliissigkeitsstr6mungen. Ann. d .  

JORDINSON, R. 1970 The flat plate boundary layer. Part 1. Numerical investigation of the 

LIN, C. C. 1945/46 On the sbbility of two-dimensional parallel flows. Parts 1-3. Q.  Appl. M a t h  

RADBIL, J. R. 1966 A new method for prediction of stability of laminar boundary layers. North 

SAKAI, H. 1983 PROQFCAM ‘S-T METHOD FOR 0-s EQ.’ Part of Master’s Thesis, Institute of 

SCHLICHTINO, H. 1935 Amplitudenverteilung und Energiebilanz der kleinen Storungen bei der 

Tsuak, S. 1978 Methods of separation of variables in turbulence theory. NASA CR 3054. 
WAZZAN, A. R., O m m ,  T. T. & SMITH, A. M. 0. 1968 Spatial and temporal stability charts 

Phys. 74, 577. 

Ordommerfeld equation. J. Fluid Mech. 43, 801. 

3 ,  117, 218, 277. 

American Aviation Rep. C6-1019/020. 

Engineering Mechanics, University of Tsukuba. 

Plattengrenzschicht. Nachr. &. Wisrr. Ciitt., Math.-Phys. Kl. 1, 47. 

for the Falknedkan boundary-layer profiles. McDOnnell Douglas Rep. DAC-67086. 




